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Summary. Adjusted attributable risk (AR) is the proportion of diseased individuals in a population that
is due to an exposure. We consider estimates of adjusted AR based on odds ratios from logistic regression
to adjust for confounding. Influence function methods used in survey sampling are applied to obtain simple
and easily programmable expressions for estimating the variance of ÂR. These variance estimators can be
applied to data from case–control, cross-sectional, and cohort studies with or without frequency or individual
matching and for sample designs with subject samples that range from simple random samples to (sample)
weighted multistage stratified cluster samples like those used in national household surveys. The variance
estimation of ÂR is illustrated with: (i) a weighted stratified multistage clustered cross-sectional study
of childhood asthma from the Third National Health and Examination Survey (NHANES III), and (ii) a
frequency-matched case–control study of melanoma skin cancer.
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1. Introduction
The “population attributable risk” (AR) of a disease due to
a risk factor is the proportion of diseased individuals in the
population that would not develop if the risk factor had been
eliminated. The AR of lung cancer due to smoking is the pro-
portion of lung cancer cases that would not have occurred
if no one in the population smoked. There are other equiva-
lent terms for AR such as “population attributable fraction”
and “population etiologic fraction” (Benichou, 2000, p. 51).
The AR can also be defined for a reduction of the level of
a risk factor in a population. Methods for estimating unad-
justed and (model-based) adjusted ARs for confounders have
been developed for case–control (Levin, 1953; Bruzzi et al.,
1985), cross-sectional (Basu and Landis, 1993), and cohort
(Benichou, 2001) studies. Using the delta method, Benichou
and Gail (1990) derived estimates of standard errors for ad-
justed AR for several case–control study designs. However,
their computational formulas are complicated and difficult
to implement. Also, it is important to generalize these stan-
dard error estimates to surveys with complex sample de-
signs that involve sample weighting and cluster sampling be-
cause ARs are estimated from surveys (e.g., Gergen et al.,
1998; Gillum, Mussolino, and Madans, 2000), which provide
excellent sources for population-based data, and analytical
variance estimators are not generally available for complex
surveys (Benichou, 2001).

A general approach has been developed in the survey re-
search literature for obtaining estimates of variance of com-
plex estimators under a variety of sample designs that are

based on the delta method (Binder, 1996; Deville, 1999;
Demnati and Rao, 2001, 2004; Shah, 2002, 2004). For an es-
timator G, this approach uses results from influence func-
tion theory to compute the value of the “Taylor deviate”
of the estimator G. A Taylor deviate for G is derived from
the first-order Taylor expansion of G for each observation
and can be interpreted as a measure of the change (influ-
ence) of the value of G when the observation is deleted.
It can be shown by delta method arguments that the sum
of the Taylor deviates evaluated with the true parameter
values approximates G minus its expectation. An estimate
of the variance of this sum can be obtained from classi-
cal sampling theory for the particular sample design of the
study.

In this article, we consider estimates of AR for unmatched,
frequency matched, and individual matched case–control,
cross-sectional, and cohort studies. Influence function meth-
ods are used to obtain Taylor deviates for each of these es-
timates. Then we provide variance estimates for these AR
estimates that are simple to program and are applicable to
a wide range of simple and complex sample designs that are
used in sample surveys and other observational studies. We
show that our variance estimator of AR for unmatched case–
control studies is approximately the same as the variance es-
timator given by Benichou and Gail (1990). We illustrate the
estimation of AR and its standard error with a case–control
study of melanoma skin cancer and an analysis of environ-
mental smoke using the Third National Health and Nutrition
Examination Survey.
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2. Definitions of Attributable Risk
Suppose that disease status is indicated by the binary variable
Y = 1 for disease and Y = 0 for no disease, and there is single
binary risk factor E = 1 for exposed and E = 0 for nonexposed.
The unadjusted AR of a disease that is due to the risk factor
is defined as

AR = [Pr(Y = 1) − Pr(Y = 1 |E = 0)]/Pr(Y = 1),

where Pr is the probability in the population. When there are
K levels of the risk factor, e0, . . . , eK−1 where e0 is the baseline
level, the unadjusted AR for E can be formally defined as

AR = [Pr (Y = 1) − Pr (Y = 1 |E = e0)] /Pr (Y = 1) .

The AR that is adjusted for a confounder with multiple levels,
U = u1, u2, . . . ,uC , is defined as

AR = 1 −
C∑
c=1

Pr(U = uc)

×Pr(Y = 1 |E = e0, U = uc)/Pr(Y = 1) (1)

(Whittemore, 1982). This definition can be extended to in-
clude U as a vector of q confounders and E as a vector of p
risk factors where C in equation (1) becomes the number of
combinations of the levels of the q components of U.

A convenient way to express the adjusted AR, which is due
to Bruzzi et al. (1985), is

AR = 1 −
C∑
c=1

K−1∑
m=0

ρmcRR−1
m0|c, (2)

where ρmc = Pr(E = em, U = uc |Y = 1), the joint distri-
bution of the risk factors and the confounders among
the diseased, and RRm0 |c = Pr(Y = 1 |E = em, U = uc)/
Pr (Y = 1 |E = e0, U = uc) , which is the adjusted relative
risk of disease for exposure em compared to baseline expo-
sure e0 at level c of confounding. This expression for AR is
applicable to several study designs but is particularly useful
for population-based case–control studies when the disease is
rare because the ρmc are easily estimated when the cases are a
population-based sample, and the RRm0|c are estimated from
a logistic regression.

3. Estimation of Adjusted Attributable Risk
In this section, we consider the estimation of adjusted AR as
expressed in (2) under several study designs. We assume a
logistic regression model for the probability of disease for the
jth individual,

ln
Pr (Yj = 1 |xj)

[1 − Pr (Yj = 1 |xj)]
= β′xj ,

where xj is a (column) vector of covariates, which for nota-
tional convenience includes risk factors and confounders as
well as possible interactions between them, and β is the vec-
tor of regression parameters.

Surveys used to sample subjects for case–control, cross-
sectional, or cohort studies may employ simple random sam-
ples or subjects may be sampled with different probabili-
ties depending upon their characteristics. For example, in
household surveys where one individual is randomly sampled
per household, individuals from smaller households will be

sampled at a higher rate than individuals from larger house-
holds. Approximately unbiased estimates of relative risks
(RRs) and ARs can be obtained by weighting observation j by
the inverse of its probability of being included in the sample,
which is the sample weight wj . This type of weighted esti-
mation is called Horvitz–Thompson estimation (Horvitz and
Thompson, 1951). For case–control studies, a sample-
weighted version of the adjusted AR estimator of Bruzzi et al.
(1985) is:

ÂR1 = 1 −
t∑

j=1

wj

yj
rj

/
t∑

j=1

wjyj , (3)

where t is the total sample size of cases and controls, yj is
the value of Yj indicating disease status for observation j, rj

is a sample weighted estimate of the adjusted RR of disease
for xj compared with x0j , that is, rj = exp[β̂′(xj − x0j)] with

β̂ obtained from a sample weighted logistic regression (Korn
and Graubard, 1999) and x0j a vector of covariates with the
risk factors set at the baseline, E = e0, and any confounders
remaining at the same values as they are in xj .

For simple random samples of cases and controls, the sam-
ple weights among the cases are a constant and the sample
weights among the controls are another constant. The choice
of using weighted or unweighted estimates rj is a tradeoff be-
tween robustness to model misspecification and efficiency of
the estimates (Scott and Wild, 1986). If the model is mis-
specified then weighting by the sample weights will produce
regression estimates that are approximately unbiased for the
misspecified model of the target population from which the
sample was selected. Unweighted estimates may be biased.
However, the variance of the weighted estimates will usually
be larger than those of the unweighted estimates (Korn and
Graubard, 1999, p. 172–176). When the rj are unweighted
then (3) reduces to the unweighted adjusted AR given by
Bruzzi et al. (1985).

ÂR1 can also be used with data from cross-sectional and
cohort studies of a rare disease for which the RR can be esti-
mated using a logistic regression. In case of nonrare diseases
the adjusted AR as expressed in (1) can be estimated directly
as

ÂR2 = 1 −
t∑

j=1

wjp(x0j , β̂)

/
t∑

j=1

wjp(xj , β̂), (4)

where p(x, β̂) = exp(β̂′x)/[1 + exp(β̂′x)] is the estimated
probability of disease from a sample weighted logistic regres-
sion for an individual j given x. If the sample weighted logistic
regression is used to estimate β then the denominator in ÂR2

equals the estimated number of cases in the population.
Conditional logistic regression is used to estimate adjusted

RRs for case–control studies that individually match controls
to cases, for example, sibling controls. Also, conditional logis-
tic analysis can be used to estimate RRs for cross-sectional or
cohort studies that sample small clusters of subjects, for ex-
ample, household or family, and that condition on dummy co-
variates identifying the subjects from the same cluster. These
clusters are treated as matched sets in conditional logistic
analyses. Let there be s matched sets with nk and mk cases
and controls, k = 1, 2, . . . , s. We assume that we have a sam-
ple of matched sets where the kth sampled set has a sample
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weight of wk . We do not consider conditional analyses for stud-
ies where we sample cases or controls so that sample weights
vary among cases and controls within a matched set. For
example, for a matched sibling case–control study we would
not allow the sibling controls to be sampled at rates that differ
by age. The weighted (adjusted) AR estimator can be written
as

ÂR3 = 1 −
s∑

k=1

wk

nk∑
i=1

1

rki

/
s∑

k=1

wknk, (5)

where rki is estimated from a sample weighted conditional
logistic regression (see Appendix A).

4. Taylor Deviates for AR Estimators
We use the influence function operator, denoted by ∆i(·), to
provide a simple derivation for the Taylor deviates of the
adjusted ÂR’s. Three properties of the operator, which are
stated by Shah (2002) and similarly stated by Deville (1999),
are used:

I. The delta operator of a sum of a function of m variables
u

(1)
j , . . . ,u

(m)
j , S =

∑n

j=1 f(u
(1)
j , . . . ,u

(m)
j ), is ∆i(S) =

f(u
(1)
i , . . . ,u

(m)
i ), for example, if S =

∑n

j=1 yj , is ∆i (S) =
yi.

II. Let F (θ̂) be a differentiable function of θ̂ =
(θ̂1, θ̂2, . . . ,θ̂M )′. Then the delta operator of F (θ̂) is

∆i[F (θ̂)] =
∑M

m=1
∂F

∂θ̂m
∆i(θ̂m). If θ̂ is not a closed form

expression, for example, β̂ from a logistic regression,
then evaluating ∆i(θ̂) may involve using its estimating
equations.

III. The delta operator applied to a sum of a func-
tion of observations and parameter estimates, that is,∑n

j=1 H(y
(1)
j , . . . ,y

(m)
j , θ̂), is evaluated as a combination

of I and II:

∆i

[
n∑

j=1

H
(
y

(1)
j , . . . ,y

(m)
j , θ̂

)]
=

H
(
y

(1)
i , . . . ,y

(m)
i , θ̂

)
+


∂

n∑
j=1

H
(
y

(1)
j , . . . ,y

(m)
j , θ̂

)
∂θ̂


′

∆i(θ̂).

4.1 Taylor Deviate for ÂR1

The Taylor deviates of ÂR1, ÂR2, and ÂR3 are derived in
Appendix A using the three properties of ∆i (·). The deviates
for ÂR1 and ÂR2 are given by:

∆i(ÂR1) =
−1

t∑
j=1

wjyj

{
wiyi
ri

−
t∑

j=1

wjyj [(xj − x0j)r
−1
j ]′

×∆i(β̂) − (1 − ÂR1)wiyi

}
(6)

and

∆i(ÂR2)

=
−1

t∑
j=1

wjp(xj , β̂)

(
wip(x0i, β̂) +

t∑
j=1

wjx
′
0jp(x0j , β̂)

× [1 − p(x0j , β̂)] ∆i(β̂) −

t∑
j=1

wjp(x0j , β̂)

t∑
j=1

wjp(xj , β̂)

×
{
wip(xi, β̂) +

t∑
j=1

wjx
′
jp(xj , β̂)

× [1 − p(xj , β̂)] ∆i(β̂)

})
, (7)

where ∆i(β̂) = {
∑t

j=1 wjxjx
′
jp(xj , β̂)[1 − p(xj , β̂)]}−1wixi ×

[yi − p(xi, β̂)]. The expression for ∆i(β̂) is obtained by apply-
ing the delta operator to the estimating equations for maxi-
mizing the pseudo-likelihood for weighted logistic regression
(see Appendix A).

The Taylor deviates of ÂR3 are given with their derivation
in Appendix A. In the computation of ÂR3, the β̂ is obtained
from maximizing the pseudo-likelihood for a sample weighted
conditional logistic regression. In deriving the Taylor deviates,
the matched sets are then treated as the fundamental sample
units.

5. Variance Estimator for AR Estimates
Let zi represent a generic Taylor deviate for an estimator of
AR, for example, zi = ∆i(ÂR1), and let z∗i be the same as zi

but evaluated at β̂ = β. Because
∑t

i=1 z
∗
i

for an estimate of
AR approximates the estimate minus its expectation, we need
only estimate the variance of

∑t

i=1 z
∗
i and then substitute β̂

for β to obtain estimated variances of the ÂRs s = 1, 2, 3
(Deville, 1999). We will give a variance estimator for

∑t

i=1 z
∗
i

from classical sampling theory when the sample is a stratified
multistage cluster sample and then show how this variance
estimator can be utilized to obtain variance estimates for a
variety of sample designs that are special cases.

In order to introduce stratified multistage cluster sampling
and its notation, suppose the population of individuals can be
partitioned into a set of primary sampling units (PSUs) and
that the PSUs for the population are divided into L sampling
strata. For household surveys the PSUs are usually geograph-
ically defined, for example, counties, and the strata defined
by demographic characteristics, for example, population size
of the PSUs. At the first stage of sampling, th PSUs are ran-
domly sampled from each stratum h, h = 1, . . . ,L. There can
be additional stages of sampling nested within the sampled
PSUs to obtain a random sample of thi individuals from the
ith sampled PSU in stratum h where each sampled individual
has a sample weight whij , j = 1, . . . , thi . Stratified multistage
cluster sampling is often used in household surveys to select
subjects for cross-sectional studies. Also, these surveys are
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used to form baseline samples to be followed up in cohort stud-
ies (Korn and Graubard, 1999). Stratified multistage cluster
sampling can also be used to select controls and/or cases in
population-based case–control studies (Graubard, Fears, and
Gail, 1989).

Under stratified multistage cluster sampling, ÂR1 can be
expressed as

ÂR1 = 1 −
L∑

h=1

th∑
i=1

thi∑
j=1

whij
yhij

rhij

/
L∑

h=1

th∑
i=1

thi∑
j=1

whijyhij , (8)

and ÂR2 can be expressed as

ÂR2 = 1 −
L∑

h=1

th∑
i=1

thi∑
j=1

whij×

p(x0hij , β̂)

/
L∑

h=1

th∑
i=1

thi∑
j=1

whijp(xhij , β̂). (9)

For the individual matched studies we consider stratified mul-
tistage cluster sampling of matched sets where each sampled
matched set of cases and controls is contained within the
clusters sampled in the last stage of sampling, ÂR3 can be
expressed as

ÂR3 = 1 −
L∑

h=1

th∑
i=1

thi∑
j=1

(
whij

nhij∑
k=1

1

rhijk

)
/

L∑
h=1

th∑
i=1

thi∑
j=1

whijnhij , (10)

where thi is the number of matched sets sampled from the ith
sampled PSU in stratum h and nhij is the number of cases in
the jth sampled matched set from the hith sampled PSU.

The variance estimation for stratified multistage cluster
sampling can be simplified if the first stage finite population
correction factors are ignored, that is, approximate the first
stage sampling of PSUs as sampling with replacement; see the
Discussion for the implications of this simplification. In this
case, the variance estimator for the AR estimate is expressed
in terms of the variability of the between PSU-level sums of
the Taylor deviates within the sampling strata. The variance

estimate of ÂRs, s = 1, 2, or 3 is given by

v̂ar(ÂRs) =

L∑
h=1

th
th − 1

th∑
i=1

(zhi − z̄h)2, (11)

where z̄h = 1
th

∑th
i=1 zhi , zhi =

∑thi
j=1 zhij , and zhij =∆hij (ÂRs)

(Korn and Graubard, 1999, p. 27–28). Equation (11) is a vari-

ance estimator for the sum
∑L

h=1

∑th
i=1 z

∗
hi , where z∗hi is the

same as zhi but with β substituted for β̂, that is, z∗hi is esti-
mated by zhi . The indices for the Taylor deviates involve more
levels in order to handle the complex sampling, but it should
be clear how to relate this notation to that used in the ear-
lier sections of this article. For further details about variance
estimation for stratified multistage cluster sampling see Korn
and Graubard (1999, p. 19–28).

A point worth noting about the variance estimator in (11)
is that besides being applicable to a wide range of study de-

signs that can have complex stratified cluster sampling it is
applicable to exposures and covariates that can be continuous
as well as categorical. Next, we illustrate the use of expression
(11) to obtain variance estimators of AR for two sample de-
signs for sampling cases and controls in case–control studies.

5.1 Unmatched Case–Control Studies
We assume that the cases and controls are independent sim-
ple random samples from a stratum of cases and a stratum
of controls. Because this is a case–control study without in-
dividual matching of controls, we will use the estimator ÂR1.
There are two sampling strata (L = 2), no cluster sampling
(thi ≡ 1), and the sample weights, that is, the inverse of the
sampling fraction, are equal to a constant among the cases
and a different constant among the controls. Here ÂR1 re-
duces to (3) with the weights under the sums canceling out.
For this case, the variance estimator reduces to

v̂ar(ÂR1) =

2∑
h=1

th
th − 1

th∑
i=1

(zhi − z̄h)2, (12)

where

zhi = ∆hi (ÂR1)

=
−1

t1

{
yhi

rhi
−

2∑
h=1

th∑
j=1

yhj

[
(xhj −x0hj)r

−1
hj

]′
∆hi (β̂)

}
, (13)

t1 is the number of cases and z̄h = 1
th

∑th
i=1 zhi , h = 1, 2, are

the mean of the Taylor deviates for the cases and controls, re-
spectively. Comparing zhi in (13) without the sample weights
to (6) the term (1 − ÂR1) yhi is dropped in (13) because the

denominator in ÂR1, which is the number of cases, is a con-
stant.

5.2 Frequency Matched Case–Control Studies
We assume that a stratified simple random sample of cases
is selected from L1 strata where the sampling weights vary
by stratum. The controls are frequency matched to the cases
within L2 categories of confounders, for example, the match-
ing could be within gender by 5-year age categories. For pur-
poses of variance estimation, these matching categories are
treated as sampling strata for the controls. The matching can
be adjusted for in the logistic regression estimation of the RRs
by including as covariates dummy variables for the matching
categories. Usually the estimates of the RRs from frequency
matched case–control studies are not weighted by the sample
weights because this would unbalance the matching. There-
fore, the adjusted RRs will be unweighted but sample weight-
ing will be used to estimate the risk factor distribution in
the case population when estimating the AR. For this sample

design the ÂR1 can be written as

ÂR1 = 1 −
L1∑
h=1

th∑
i=1

wh
1

rhi

/
L1∑
h=1

th∑
i=1

wh,

where the wh are sample weights for the sampled cases in
the L1 strata. Applying the variance estimator in (11) to this
sample design, which has no cluster sampling and L = L1 + L2

strata for sampling the cases and controls, we obtain
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v̂ar(ÂR1) =

L∑
h=1

th
th − 1

th∑
i=1

(zhi − z̄h)2,

where z̄h = 1
th

∑th
j=1 zhi and zhi = ∆hi (ÂR1).

6. Comparison to the Benichou–Gail
Variance Estimator

For an unmatched case–control study of a simple random sam-
ple of cases and controls, we analytically compared the vari-
ance estimator of Benichou and Gail (1990) to our variance
estimator given in (12). Benichou and Gail (1990) express
their estimator as a sum of three terms:

v̂ar(ÂR1) =
∑
mc

∑
m′c′

r−1
m|cr

−1
m′ |c′ ĉov (ρ̂mc, ρ̂m′c′)

+
∑
mc

∑
m′c′

ρ̂mcρ̂m′c′ ĉov
(
r−1
m|c, r

−1
m′ |c′

)
+

∑
mc

∑
m′c′

r−1
m|c ρ̂m′c′ ĉov

(
ρ̂mc, r

−1
m′ |c′

)
, (14)

where m = 0, . . . ,K − 1 are the levels of exposure and c =
1, . . . ,C are the levels of the confounders. The estimator in
(12) can be written as a sum of three terms. Let z

(1)
hi =

−yhi/t1rhi and z
(2)
hi = −1

t1

∑2
s=1

∑ts
j=1 ysj [(xsj −x0sj)r

−1
sj ]

′
∆hi (β̂),

then we can re-express (12) as

v̂ar(ÂR1) =
t1

t1 − 1

t1∑
i=1

(
z

(1)
1i − z̄

(1)
1

)2

+

2∑
h=1

th
th − 1

th∑
i=1

(
z

(2)
hi − z̄

(2)
h

)2

+
2t1

t1 − 1

t1∑
i=1

(
z

(1)
1i − z̄

(1)
1

)(
z

(2)
1i − z̄

(2)
1

)
,

which corresponds to the three terms in (14). If we use the
robust estimator version of ĉov(r−1

m|c, r
−1
m′ |c′) in (14), as de-

scribed in Benichou and Gail (1989), and we drop the terms
th/(th − 1) in (11), which are approximately one for this case,
then the two estimators are the same. Thus, the simulation
results for case–control studies for small samples given in
Benichou and Gail (1990) will apply as well to our proposed
variance estimator.

7. Two Data Examples
We illustrate the weighted estimation of the adjusted AR and
its estimates of variance using data from two studies. The
first study is a cross-sectional study of environmental tobacco
smoke (ETS) and asthma among children in the Third Na-
tional Health and Examination Survey (NHANES III). The
second study is a population-based case–control study of as-
sociation sunlight exposure and other risk factors on develop-
ment of melanoma skin cancer among adults.

7.1 NHANES III Analysis of ETS and Childhood Asthma
The NHANES III was conducted from 1988 to 1994 and
collected a U.S. national cross-sectional random sample of
civilian noninstitutionalized children 2 months to 5 years of

age, using a stratified multistage clustered probability sam-
ple design. For purposes of variance estimation the sample
design is approximated by the sampling of two (pseudo-)
PSUs from 49 geographically based (pseudo-) sampling strata
(Ezzati et al., 1992; NCHS, 1994). There is a sample weight
for each child, which reflects higher probabilities for selecting
black American and Mexican–American children and adjust-
ments for differential nonresponse and poststratification to
U.S. population sizes.

Following the analysis of Gergen et al. (1998), logistic re-
gression was used to model the prevalence of asthma for 7680
children who were white, black, or Mexican-American and
completed the home interview; children of other races were
excluded. The NHANES III data and documentation used for
this example are available from the United States Centers for
Disease Control/National Center for Health Statistics website
(http://www.cdc.gov/nchs/about/major/nhanes/datalink.
htm#NHANESIII). The binary dependent variable, asthma,
was a self report (by a parent) of a physician’s diagnosis
of asthma. ETS, the exposure of interest, was parental self
reported usual daily total number of cigarettes smoked by
individuals living in the same home as the sampled child.
The ETS was categorized into no smoking, 1–19, and ≥20
cigarettes. The other confounding independent variables in
the regression model were age in months at last birthday,
sex, race/ethnicity, birth weight, attendance at day care with
≥6 children for at least 10 hours per week for more than
1 month, biologic parent with a history of asthma or hay
fever, child was breast fed for at least 1 month, highest grade
completed by head of household, and number of persons
living in the same household as the child.

Among children 2 months to 5 years of age living in the
United States, a sample weighted estimate of 5.8% was re-
ported to be diagnosed with asthma, which shows that child-

hood asthma is not a particularly rare condition. ÂR2 in (9)
was used to estimate the adjusted AR.

When estimating AR from studies with complex sample de-
signs such as the NHANES III, we recommend using design-
based methods that use sample weighted estimation of the
AR and that account for stratification and clustering of the
sample design in the estimation of the standard error. By
doing so, the repeated sampling-based properties of the esti-
mation of the AR for the target population are correctly re-
flected by the estimator and its standard error. The (sample)
weighted AR estimate of childhood asthma due to ETS was
9.9% with a design-based standard error of 6.3%. To demon-
strate the effect of the sample weighting on the estimation of
the AR, we compared the sample weighted and unweighted
estimates in Table 1. The unweighted estimate of AR was
11.3%, which is about 14% larger than the weighted estimate.
This was primarily because the unweighted estimates of the
adjusted odds ratios (OR) for the ETS were slightly greater
than the weighted estimates (unweighted ORs were 1.15 and
1.93 compared to the weighted ORs of 1.01 and 1.87, for expo-
sure to 1–19 and ≥20 cigarettes smoked per day compared to
nonsmoking households). Table 1 compares our design-based
standard errors that use weighted estimation and account for
the stratified cluster sampling to standard errors that use
(i) unweighted estimation and account for the stratified
cluster sampling, (ii) unweighted estimation and do not
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Table 1
Adjusted AR and standard error of asthma due to ETS for
NHANES III children 2 months to 5 years of age by sample

weighting and variance estimation

Standard error of ÂR (%)

Sample Account for stratified Ignore stratified

weighting ÂR (%) cluster sampling cluster sampling

Weighted 9.9 6.3 5.8
Unweighted 11.3 4.8 3.8

account for the stratified cluster sampling, treating the sam-
ple as a simple random sample of individual children, or
(iii) weighted estimation and do not account for the strati-
fied cluster sampling, treating the sample as a random sample
of children with replacement but with differential probabili-
ties of selection. The standard errors that accounted for the
clustering were larger because of intracluster correlation of
the prevalence of asthma. One can also see that the sample
weighting increases the standard errors, which is often the
case (Korn and Graubard, 1999, p. 172–176). However, the
weighted estimates are approximately unbiased for the target
U.S. population.

7.2 Population-Based Case–Control Study of Risk Factors
for Melanoma Skin Cancer

In a case–control study, all patients aged 20–79 years with
histologically confirmed invasive cutaneous melanoma were
recruited from those newly diagnosed in 1991–1992 at the
University of Pennsylvania’s Pigmented Lesion Clinic in
Philadelphia and the University of California’s Melanoma
Clinic in San Francisco. Controls were from outpatient clinics
with catchment areas similar to the two melanoma clinics and
were frequency matched to patients within strata defined by
sex, age group, and study site. Initial complaints of the eligible
controls varied widely: about 40% were seen for routine phys-
ical examinations, 20% for cardiovascular examination, 10%
for infections, and 30% for other reasons. Patients with ini-
tial complaints of dermatologic or psychiatric problems were
excluded.

Each participant was interviewed in person by trained in-
terviewers to obtain individual characteristics. Each partic-
ipant was examined and freckling pattern, counts of nevi
>2 mm, and dysplastic nevi were recorded. Hair color and
complexion were assessed by self report. Examiners (physi-
cians and nurses) were uniformly trained and retrained every
6 months by the same instructor. Dysplastic nevus status for
each study subject was confirmed by an expert senior exam-
iner (Tucker et al., 1997).

Unconditional logistic regression with terms for the match-
ing strata was used to examine the risk of melanoma among
non-Hispanic white males. Risk factors for skin cancer can de-
pend on gender and we chose to restrict this analysis to males.
The analysis was also restricted to non-Hispanic whites be-
cause there were few individuals in other ethnic/race groups.
Dichotomous risk factors of interest included hair color other
than dark brown or black; fair complexion; extensive freckling
on at least one area of the body; 50 or more moles not more

than 2 mm; and presence of any dysplastic nevi. There were
no confounders. Note that this example differs from the previ-
ous asthma example in that it has multiple risk factors. While
melanoma of the skin is an increasing clinical problem, it is
a rare event. The age-adjusted incidence rate for both sexes
is 20.1 per 100,000 person years (Ries et al., 2003). The case
sample was regarded as a simple random sample of area cases
and the control sample was regarded as a stratified sample of
controls using the matching strata as the sampling strata. Un-
weighted logistic regression was used for the ÂR1. There were
392 cases and 502 controls in this analysis. The estimate of
its standard error used Taylor deviates derived in Appendix
A in equations (A.1) and (A.2). We obtained ÂR1 = 83.0%
with standard error of 3.2%. The formula for the Taylor de-
viate is easily programmed and a program using SAS Version
8.0 (1999) is provided in Appendix B, which also allows for
sample weighting.

8. Discussion
In this article, we have provided simple and easily pro-
grammable analytical formulas for computing the standard
errors for estimated AR for case–control studies that are fre-
quency or individually matched, cross-sectional studies, and
cohort studies. We considered estimating standard errors for
sample designs used to select study subjects that ranged from
simple random sampling to stratified multistage cluster sam-
pling. Influence function theory in conjunction with classical
sampling theory was applied in deriving the formulas for vari-
ance estimators of adjusted AR.

Jackknife and bootstrap replication methods for variance
estimation offer alternatives to analytical methods for com-
puting standard errors and confidence intervals of AR (Llorca
and Delgado-Rodriguez, 2000) but require more computa-
tional time. Also, replication methods are readily applicable
to complex weighted sample designs (Rust and Rao, 1996).
Because of the large sample sizes in our two data exam-
ples, the jackknife estimates agree with our estimates to four
decimal places as would be expected because for differen-
tiable functions of the data the jackknife is asymptotically
equivalent to variance estimation based on the delta method
(Krewski and Rao, 1981; Efron and Tibshirani, 1993, Chapter
21). One note of caution is that because replication methods
or delta methods for estimating the variance rely on large
samples to be consistent either approach could be biased for
sparse exposures or in case of small sample size.

Ignoring the finite population correction factors results in
variance estimation given by (11) more closely approximates
the superpopulation variance. The superpopulation variance
is usually the variance of interest because it is the variance
of the underlying stochastic process that has given rise to the
population from which the sample is selected, and it is this
process that most analysts want to make inferences about
rather than the finite population (see Graubard and Korn,
2002 for further discussion). However, in general, even after
dropping the finite population correction factors, the finite
population sampling variance estimators will underestimate
the superpopulation variance when the sample fractions are
not small and there is nonnegligible between (sampling) strata
variability in the AR. Graubard and Korn (2002) provide cor-
rections to the repeated sampling variance estimators that
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can be used to estimate the “superpopulation” variance of
AR.

AR estimates from case–control studies are used to esti-
mate absolute risk of disease by combining them with age-
specific disease incidence rates obtained from a population
disease registration system and age-specific mortality rates
from other causes of disease (Gail et al., 1989). The influence
function methods described in this article can be used to ob-
tain standard errors and confidence intervals for absolute risk.
It can be shown that the absolute risk of disease for an indi-
vidual is a monotone increasing function of (1 − ÂR)r0, where
r0 = exp(β̂′x0) and x0 are the vector of the individual’s covari-
ates and risk factors with the risk factors set at the baseline
levels. Because the age-specific disease incidence and mortal-
ity rates are usually based on disease registries that have large
samples and that are independent of the studies used to esti-
mate the relative risks, they can be treated as fixed and the
influence function method described in this article can be di-
rectly applied to obtain standard errors for (1 − ÂR)r0. How-
ever, if a cohort study is used to estimate the age-specific dis-
ease incidence or mortality rates or the AR then care should
be exercised to take into account the variability of these rates
in the estimation of the standard errors (Benichou and Gail,
1995). These standard errors can be used to form confidence
intervals for estimates of absolute risk of disease.

Finally, for simplicity we have restricted the modeling of

the adjusted RR used in ÂR1 to logistic regression. However,
other types of regression modeling could be used to estimate
adjusted RRs. For instance, Poisson and proportional haz-
ard regression are commonly used to estimate adjusted rel-
ative hazards from cohort studies that, under a rare disease
assumption, approximate RRs. Using the influence function
method described in this article, Taylor deviates can be ob-
tained for these estimated RRs and then substituted into the
formula for the deviate of ÂR1 which can then be used in (11)
to estimate the variance of ÂR1.
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Appendix A

Derivation of Taylor Deviates for ÂR1, ÂR2, and ÂR3

A.1 Taylor Deviate for ÂR1

We can write ÂR1 = 1 − S1
S2

, where S1 =
∑t

j=1 wj
yj
rj

and S2 =∑t

j=1 wjyj . The Taylor deviate of ÂR1 is derived, using the
three properties of ∆i(·) in Section 4, as

∆i(ÂR1) =
∂ÂR1

∂S1
∆i(S1) +

∂ÂR1

∂S2
∆i(S2)

=
∂ÂR1

∂S1

[
wiyi
ri

+
∂S1

∂β̂
∆i(β̂)

]
+

∂ÂR1

∂S2
wiyi

=
−1

t∑
j=1

wjyj

[
wiyi
ri

+

t∑
j=1

wjyj

(
∂r−1

j

∂β̂

)′

×∆i(β̂) − (1 − ÂR1)wiyi

]
, (A.1)

where ∂r−1
j /∂β̂ = −(xj − x0j)r

−1
j . The expression for ∆i(β̂)

is obtained by applying the delta operator to the estimat-

ing equations for maximizing the pseudo-likelihood for sample
weighted logistic regression:

0 = ∆i

(
t∑

j=1

wjxj [yj − p(xj , β̂)]

)
= wixi[yi − p(xi, β̂)]

−
{

t∑
j=1

wjxjx
′
jp(xj , β̂)[1 − p(xj , β̂)]

}
∆i(β̂).

Solving for ∆i(β̂)

∆i(β̂) =

{
t∑

j=1

wjxjx
′
jp(xj , β̂)[1 − p(xj , β̂)]

}−1

×wixi[yi − p(xi, β̂)]. (A.2)

A.2 Taylor Deviate for ÂR2

We can write ÂR2 = 1 − (T1/T2), where T1 =
∑t

j=1 wj

p(x0j , β̂) and T2 =
∑t

j=1 wjp(xj , β̂). The Taylor deviate of
ÂR2 given in (7) can be derived in the following way:

∆i(ÂR2) =
∂ÂR2

∂T1
∆i(T1) +

∂ÂR2

∂T2
∆i(T2)

=
∂ÂR2

∂T1

[
wip(x0i, β̂) +

∂T1

∂β̂

]
+
∂ÂR2

∂T2

[
wip(xi, β̂) +

∂T2

∂β̂

]

=
−1

T2

(
wip(x0i, β̂) +

t∑
j=1

wjx
′
0jp(x0j , β̂)

× [1 − p(x0j , β̂)]∆i(β̂)

−T1

T2

{
wip(xi, β̂) +

t∑
j=1

wjx
′
jp(xj , β̂)

× [1 − p(xj , β̂)] ∆i(β̂)

})
. (A.3)

A.3 Taylor Deviate for ÂR3

The Taylor deviate of ÂR3 for a matched set is given by

∆h(ÂR3) =
−1

s∑
k=1

wknk

×
[
wh

nh∑
i=1

1

rhi
+

s∑
k=1

wk

nk∑
i=1

(
∂r−1

ki

∂β̂

)′

×∆h(β̂) −
(
1 − ÂR3

)
whnh

]
. (A.4)

The derivation of (A.4) follows from applying the properties
of ∆(·) that are given in Section 4. The ∆h(β̂) in (A.4) is
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based on the estimating equations from maximizing a pseudo-
likelihood for a sample weighted conditional logistic regres-
sion. This pseudo-likelihood is given by

�(β) =

s∏
k=1


exp

(
tk∑
i=1

β′xkiyki

)
∑
j

exp

 tk∑
ij=1

β′xkijykij





wk

,

where xki are the covariate vectors and yki are the binary re-
sponse variables for observation i in matched set k and the
summation over j in the denominator is over all combinations
of assigning nk cases and mk controls among the tk = nk + mk

observations in matched set k. The estimating equations for β
are obtained by differentiating the log of the pseudo-likelihood
with respect to β and are given by

0 = U(β̂) =

s∑
k=1

wk

tk∑
i=1

xkiyki −
s∑

k=1

wk
Ak

Bk

,

where

Ak =
∑
j

 tk∑
ij=1

xkijykij

 exp

 tk∑
ij=1

β̂′xkijykij


and

Bk =
∑
j

exp

 tk∑
ij=1

β̂′xkijykij

.

Applying the delta operator to the estimating equations for
each matched set h we obtain ∆h(β̂) as follows:

0 = ∆h[U(β̂)] = wh

th∑
i=1

xhiyhi − wh
Ah

Bh

−
∂

s∑
k=1

wk
Ak

Bk

∂β̂
∆h

(
β̂
)
.

Solving for ∆h(β̂)

∆h(β̂) =

[
s∑

k=1

wk

(
1

Bk

∂Ak

∂β̂
− Ak

B2
k

∂Bk

∂β̂

)]−1

×wh

(
th∑
i=1

xhiyhi −
Ah

Bh

)
,

where

∂Ak

∂β̂
=

∑
j

 tk∑
ij=1

xkijykij

 tk∑
ij=1

x′
kij

ykij


× exp

 tk∑
ij=1

β̂′xkijykij



and

∂Bk

∂β̂
= A′

k.

This expression for ∆h(β̂) is substituted in (A.4) to obtain

the Taylor deviate for ÂR3. ∆h(β̂) without sample weighting
was derived by Fay and Graubard (1999) to form a sandwich
variance estimator for β̂.

Appendix B

SAS Program for Taylor Deviate of ÂR1

The example code is for SAS Version 8.0 (1999) and uses
proc iml. Males3 is the data set name, x00 has a value of
one, m1, . . . ,m11 can be strata indicator or confounder vari-
ables, x1, . . . , x5 are dichotomous risk factors, p is the pre-
dicted probability of case status from a logistic regression
model of m1, . . . ,m11 and x1, . . . , x5 on case/control status,
the variable case is the case/control indicator, r is the esti-
mated relative odds, and w is the sample weight.

proc iml;

use males3;

read all var {x00 m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11

x1 x2 x3 x4 x5 p case rw};

pq=p#(1 − p);

x=x1||x2||x3||x4||x5;
casecnt = case` ∗ (case#w);

x0=(x00||m1||m2||m3||m4||m5||m6||m7||m8||m9||m10||m11);
rinv = r##−1;
xxpq = (x0||x)` ∗ ((x0||x)#pq#w);
caseterm = case ∗ inv(casecnt)#rinv#w;

casectlterm = inv(casecnt) ∗ (case#rinv#w)` ∗ (x);

partialBwrtWl= ((inv(xxpq)) ∗ ((x0||x)#(case-p)#w)`)
[13:17,];

/∗must drop first 12 rows that refer to x00 and the

strata/confounder variables∗/
onemAR = (case`∗(case#w#rinv))∗inv(casecnt);
Arterm = (case∗inv(casecnt)∗onemAR)#w;
z = −caseterm +(casectlterm∗partialBwrtWl)`+

ARterm;

out = z||case;
/∗Taylor deviate of AR1 estimator and case indicator

∗/
varname_out = {‘AR1 deviate’ ‘Case’};
create deviates from out[colname = varname_out];

append from out;

quit; run;

The output data set out contains the variable AR deviate, the

Taylor deviate of ÂR1, and the variable case. These data can
then be merged with the sample design variables that have
codes for the sampling strata and cluster memberships for
each observation. This merged data set is used as the input
data for equation (11) to obtain the variance estimate for

ÂR1.


